High Performance Differential Elastic Actuator for Robotic Interaction Tasks
نویسندگان
چکیده
For complex robotic tasks (manipulation, locomotion, haptics, ...), the lack of knowledge of precise interaction models, the difficulties to precisely measure the task associated physical quantities (force, speed, ...) in real time and the non-collocation of sensors and transducers have negative effects on performance and stability of robots when using simple force or simple movement controllers. To cope with these issues, some researchers proposed a new approach named «interaction control» that refers to regulation of the robot’s dynamic behavior at its ports of interaction with the environment. Interaction control involves specifying a dynamic relationship between motion and force, and implementing a control law that attempts to minimize deviation from this relationship [1]. The implementation of machines able to precisely control interaction with its environment begins with the use of actuators specially designed for that purpose. To that effect, a new compact implementation design for high performance actuators that are especially adapted for integration in robotic mechanisms is presented, this design making use of a mechanical differential as central element. Differential coupling between an intrinsically high impedance transducer and an intrinsically low impedance spring element provides the same benefits as serial coupling [4]. However differential coupling allows new interesting design implementations possibilities, especially for rotational actuators
منابع مشابه
Design and Characterization of a Novel High-Power Series Elastic Actuator for a Lower Limb Robotic Orthosis
A safe interaction is crucial in wearable robotics in general, while in assistive and rehabilitation applications, robots may also be required to minimally perturb physiological movements, ideally acting as perfectly transparent machines. The actuation system plays a central role because the expected performance, in terms of torque, speed and control bandwidth, must not be achieved at the expen...
متن کاملDesign and Characterization of a Novel High-Power Series Elastic Actuator for a Lower Limb Robotic Orthosis
A safe interaction is crucial in wearable robotics in general, while in assistive and rehabilitation applications, robots may also be required to minimally perturb physiological movements, ideally acting as perfectly transparent machines. The actuation system plays a central role because the expected performance, in terms of torque, speed and control bandwidth, must not be achieved at the expen...
متن کاملEnvironmental-Interaction Robotic Systems: Compliant Actuation Approach
Many successful designs of compliant actuators have been recently proposed. However, the challenge of providing passive and active motion in one actuator has remained. In this paper, a novel mechanism for changing the stiffness of the series elastic actuator over a wide range is presented. An accurate force source is provided by introducing the force control using veloc...
متن کاملA Compact Series Elastic Actuator for Bipedal Robots with Human-Like Dynamic Performance
Series-elastic actuation offers several important benefits to dynamic robots, including high-bandwidth force control and improved safety. While this approach has become common among legged robots, the lack of commercial series-elastic actuators and the unique design requirements of these robots leaves custom-built actuators as the only option. These custom actuators are often designed for nomin...
متن کاملOptimal Robust Control for a Series Elastic Actuator assisting Knee Joint
Rehabilitation and assistive systems such as rotary series elastic actuators (RSEA) should provide the desired torque precisely. In this paper, to improve the life quality of those who suffer from weak knees, the control problem of a rotary series elastic actuator (RSEA) has been studied in order to generate soft human walking motion. These actuators produce the require torque, but the nonlinea...
متن کامل